Efficient Mean-Shift Tracking via a New Similarity Measure

Changjiang Yang, Ramani Duraiswami and Larry Davis
Department of Computer Science, Perceptual Interfaces and Reality Laboratory
University of Maryland, College Park, MD 20742, USA

{yangcj,ramani,lsd}@umiacs.umd.edu

Abstract

The mean shift algorithm has achieved considerable
success in object tracking due to its simplicity and ro-
bustness. It finds local minima of a similarity mea-
sure between the color histograms or kernel density es-
timates of the model and target image. The most typ-
ically used similarity measures are the Bhattacharyya
coefficient or the Kullback-Leibler divergence. In prac-
tice, these approaches face three difficulties. First, the
spatial information of the target is lost when the color
histogram is employed, which precludes the application
of more elaborate motion models. Second, the clas-
sical similarity measures are not very discriminative.
Third, the sample-based classical similarity measures
require a calculation that is quadratic in the number
of samples, making real-time performance difficult. To
deal with these difficulties we propose a new, simple-to-
compute and more discriminative similarity measure in
spatial-feature spaces. The mew similarity measure al-
lows the mean shift algorithm to track more general mo-
tion models in an integrated way. To reduce the com-
plexity of the computation to linear order we employ
the recently proposed improved fast Gauss transform.
This leads to a very efficient and robust monparamet-
ric spatial-feature tracking algorithm. The algorithm is
tested on several image sequences and shown to achieve
robust and reliable frame-rate tracking.

Keywords: Mean-shift algorithm, Improved fast
Gauss transform, Similarity measure, Spatial-feature
tracking.

1 Introduction
The goal of object tracking is to find the targets
between the consecutive frames in image sequences.

Many tracking algorithms have been proposed and
implemented to overcome difficulties that arise from
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noise, occlusion, clutter, and changes in the foreground
objects or in the background environment. Gradient
based methods align tracked regions between succes-
sive frames by minimizing a cost function using var-
ious gradient descent techniques [27, 19]. Feature-
based approaches extract features (such as intensity,
colors, edges, contours) and use them to establish
correspondence between model images and target im-
ages [25, 16, 10]. Knowledge-based tracking algorithms
incorporate a priori information about the tracked
objects to obtain representations such as projected
shape, skin complexion, body blobs, kinematic skele-
tons and silhouettes [36, 34, 5, 30, 7]. Learning-based
approaches apply pattern recognition algorithms to
learn the objects either in the eigenspace or in the
kernel space, and then search for targets in image se-
quences [4, 1, 33].

Among the various tracking algorithms, mean shift
tracking algorithms have recently become popular due
to their simplicity and robustness [5, 10, 8, 20]. The
mean shift algorithm was originally invented by Fuku-
naga and Hostetler [17] for data clustering, which they
called a “valley-seeking procedure”. It was first in-
troduced into the image processing community sev-
eral years ago by Cheng [6]. Recently Comaniciu and
Meer [9, 10] successfully applied it to image segmenta-
tion and tracking.

In these mean shift tracking algorithms, a color his-
togram is used to describe the target region. The
Kullback-Leibler divergence, Bhattacharyya coefficient
and other information-theoretic similarity measures are
commonly employed to measure the similarity between
the template (or model) region and the current target
region [10, 15, 31]. Tracking is accomplished by itera-
tively finding the local minima of the distance measure
functions using the mean shift algorithm.

However, the mean shift tracking algorithms using
histograms have several serious defects. First, the spa-
tial information of the targets is lost, which precludes
the application of more general motion models. The



mean shift trackers must resort to using separate com-
putational mechanisms such as second order moment
information [5] or scale space approaches [8] to recover
the scale and other information of the targets. Sec-
ond, the classical information-theoretic similarity mea-
sures such as the Bhattacharyya coefficient [10] or the
Kullback-Leibler divergence [15] are not very discrim-
inative, especially in higher dimensions. Third, the
sample-based classical similarity measures require a
calculation that is quadratic in the number of samples,
which makes it difficult to meet the real-time require-
ment in object tracking [15].

We address these difficulties by presenting a tracking
algorithm that uses a new simple symmetric similarity
function between kernel density estimates of the tem-
plate and target distributions in a joint spatial-feature
space. Given sufficient samples, kernel density esti-
mation works well both in low and high dimensions.
The similarity measure is symmetric and is the expec-
tation of the density estimates centered on the model
(target) image over the target (model) image. Using
this similarity measure, we can derive a mean shift
tracking algorithm with general motion models. Unlike
the mean shift tracking algorithm using the histogram-
based similarity measures, our method treats the loca-
tion and other deformation in an integrated way and
tracks the deformation incrementally. Compared with
the information-theoretic similarity measures, our sim-
ilarity measure is more robust and more discriminative.

Since the similarity measure sums over every pair of
the pixel between template image and the target im-
age, the computational load is quadratic order which
is too slow for the realtime tracking. To meet the
realtime requirement of object tracking, we employ
Gaussian kernels and the improved fast Gauss trans-
form (IFGT) [35] to reduce the computations to linear
order.

Section 2 defines the similarity measures and the
problems, and presents results on synthetic data, dis-
cusses the problem the classical similarity measures
have and illustrates them. Section 3 describes the use
of this similarity measure and derives expressions for
feature-spatial tracking for the cases of translational,
scaled translational, and affine motion. Section 4 de-
scribes the speedup of computing the similarity mea-
sure using the improved FGT. Section 5 gives some
experimental results and Section 6 concludes the pa-
per.

2 Similarity Measure Between Distributions
2.1 Classical Similarity Measures

Suppose we are given two images, with one desig-
nated as the “model image” that includes the tracked
objects, while the other is the “target image” in which
we need to find the objects. The sample points in
an object in the model image are denoted by I, =
{x;,u;}}¥ |, where x; is the 2D coordinates and u; is the
corresponding feature vector (e.g., the red, green and
blue colors of sample points). The sample points in the
target image are I, = {y;, v; }jNil, encoding the 2D co-
ordinates and the corresponding feature vector. We de-
scribe the targets in the joint feature-spatial space [15].
Given the sample points and the kernel function k(z),
the p.d.f. of the object in the model image can be
estimated using kernel density estimation [28] as
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where o and h are the bandwidths in the spatial and
feature spaces. Similarly we can estimate the p.d.f.
of the target image. The benefit of the joint feature-
spatial space is that it combines the feature and spatial
information and provides good discrimination capabil-
ity.

Existing  mean-shift trackers use different
information-theoretic measures such as the Kullback-
Leibler divergence [15] and the Bhattacharyya
distance [10] to measure the affinity between distribu-
tions. The Bhattacharyya distance is
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The Kullback-Leibler distance between two distrib-
ution is defined as

DLt = [og 2%an. (3

For future reference we note that the straightforward
evaluation of these measures requires two sequential
O(N?) operations, if we assume that the p.d.f. is first
evaluated and then the summation (or integral) evalu-
ated on the sample pairs.

These measures are widely used in other areas such
as image registration [31], content-based retrieval, and
video indexing, and this lack of discriminative ability
has also been observed in [22]. To overcome the flaws of



the information-theoretic similarity measures in higher
dimensions, Hero et al [22] proposed estimating them
using entropic graphs, specifically, the minimal span-
ning tree (MST). While this procedure fixes the dis-
crimination problem, the time complexity for finding
the MST is of order O(N?log N) and the storage is
O(N?), where N is the number of vertices in the graph,
and is again too expensive for realtime object tracking.

Some authors move to a parametric representation
to avoid the difficulties of inefficient computation and
have the opportunity to use analytical similarity ex-
pressions [21]. However, even the parametric forms
of the classical similarity measures have similar prob-
lems [12].

2.2 New Sample Based Similarity Measure

Instead of evaluating the information-theoretic mea-
sures from the estimated p.d.f., we directly define the
similarity between two distributions as the expectation
of the density estimates over the model or target image.
Given two distributions with samples I, = {x;, w;}¥;
and I, = {y;,v;}}L,, where the center of sample
points in the model image is x,, and the current center
of the target points is y, the similarity between I, and
I, in the joint feature-spatial space is
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where k(x) is a RBF kernel function. This similarity
measure is based on the average separation criterion in
cluster analysis [13, 32], except that we replace the dis-
tance with a kernelized one. The kernel mapping limits
the effect of outliers and improves the robustness. Simi-
lar measures are used in [3] for unsupervised clustering
of images of 3D objects. The similarity function (4)
can be interpreted as the expectation of the spatially-
smoothed density estimates over the model image.

The similarity measure (4) is symmetric and
bounded by zero and one, but violates the triangle in-
equality which means it is non-metric. Often distance
functions that are robust to outliers or to noise disobey
the triangle inequality [26]. While our similarity func-
tion (4) is non-metric, it can be shown that its negative
natural logarithm
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is a probabilistic distance, provided we have sufficient
samples [11].

2.3 Comparing the Similarity Measures

The similarity measure (4) is directly computed over
the entire sample point sets. The affinities between all
pairs of sample points are considered based on their dis-
tances, so exact correspondence is not necessary. This
is more robust than the popular elementary tracking
techniques of template matching or sum of squared
differences (SSD). Since the sample points are sparse
in the high dimensional feature space, it is difficult to
get an accurate density estimation or histogram which
makes similarity measures such as Kullback-Leibler di-
vergence and Bhattacharyya coefficient computation-
ally unstable.

First we show that the proposed similarity method
is more discriminating than Bhattacharyya coefficient
or Kullback-Leibler divergence on synthetic data. We
randomly sample two Gaussian distributions,

pl(u) ~ G(Mlal)’ py(u) ~ G(M27I)7

where pu; = (1,0,...,0), ug = —p1, p varies from 0
to 1.5, and [ is an identity covariance matrix. For di-
mensions 3, 5 and 7, 1000 samples were generated for
each distribution and 100 repetitions were run. The
estimated distances between two distributions w.r.t.
the ground truth are displayed in Figure 1 (Left col-
umn). We also generate two distributions in dimen-
sions between 1 and 7. The centers are located at
wr = (1,1,...,1) and ps = —py1. The estimated dis-
tances between two distributions w.r.t. the ground
truth are displayed in Figure 1 (Right column).

The simulations indicate that the Bhattacharyya
and Kullback-Leibler distances computed using the
sample derived distributions are inaccurate in higher
dimensions and the computations in higher dimen-
sions are instable in the sense that repeated compu-
tations using different samples yields varying results.
Such phenomenon has already been observed in the
past and recently [12, 22]. The variance of the Bhat-
tacharyya coefficient estimate increases as the dimen-
sion increases [12]. In contrast, our similarity measure
is accurate and more stable in both lower and higher
dimensions.

As will be seen in Section 4, the present similarity
measure has the further advantage that it can be com-
puted in linear time in the number of pixels using the
improved fast Gauss transform. In contrast the non-
linear information theoretic measures have a structure
that does not permit use of the IFGT and consequently
require at least quadratic complexity.

As mentioned previously, entropic graphs such as
the minimal spanning tree have been used to esti-
mate more discriminative information-theoretic simi-



larity measures for image registration [22]. The stan-
dard algorithms for the MST is O(N?log N). The ac-
celeration of the MST relies on the nearest neighbor
searching which itself is difficult and complicated in
higher dimensions and is an active research topic [24].
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Figure 1. The distances between two distributions esti-
mated from samples using: (a) Bhattacharyya coefficient,
(b) Kullback-Leibler distance, and (c) our similarity mea-
sure, w.r.t. the ground truth. Left column: the simulations
are repeated 100 times for dimensions 3, 5 and 7, where
the distances between the centers of two Gaussian distri-
butions vary from 0 to 3. Right column: the simulations
are repeated 100 times for each dimension between 1 and 7,
where the centers of the Gaussian distributions are located

t (1,1,...,1) and (—1,-1,...,—1). All simulations use
an identity covariance matrix.

3 Similarity-Based Mean-Shift Tracking

We first derive the tracking algorithm for the case
the motion between frames is pure translation, and
generalize the motion later. Let x, be the center of
the model image and y be the center of target image,

then y = x,+p, p is the translation, then equation (4)
becomes

J(Iy, 1) = (6)
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Once we have the similarity measure between the
model and target images, we can find the target loca-
tion in the target image by maximizing the similarity
measure (6) or equivalently minimizing the distance (5)
with respect to y. We use the mean-shift algorithm [9]
which has already proved successful in many computer
vision applications [9, 10].

The gradient of the distance function (5) with re-
spect to the vector y is
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J(y) is
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where g(x) = —w'(z) is also the profile of the RBF
kernel, which is Gaussian in our case.

Given sample points {x;,u;}Y; centered at x. in
the model image, and {y;, v;}1Z, centered at the cur-
rent position ¥ in the target image, the object tracking
based on the mean-shift algorithm is an iterative pro-
cedure which recursively moves the current position ¥q
to the new position ¥; until reaching the density mode
according to
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If the size of the target changes during the tracking,
and we can model the motion model as translation plus
scaling, then the similarity measure becomes:

T d) = 1% (1)
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where s is the scaling factor accounting for the size
changes of target between frames [29].

Similarly, we obtain the updating rules for the mean-
shift tracking by differentiating (11) with respect to p
and s:
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The updating rule (12) for translation is similar to
the formula (10). The updating rule (12) for scal-
ing essentially compares the second-order moments be-
tween the template and the target. it bears strong
resemblance to the widely used scale estimate method
in [23] which also compares the second-order moments.
In contrast, the scaling updating rule proposed by
Collins [8] employs the scale-space theory which could
be confused by the multiple scales within the targets.

More complex expressions have been derived for the
cases of a general motion model, and are presented in
the appendix.

>
—-

Xi— x*

4 Speedup using the Improved FGT

The computational complexity for the direct eval-
uation of the similarity measure (4) is O(MN), and
O(PMN) for the above tracking algorithm, where P
is the average number of iterations per frame, M and
N are the number of sample points in target and model
images respectively. Typically P is less than ten, and
M =~ N. Then the order of the computational com-
plexity is quadratic, which still is too expensive for the
realtime tracking.

If the Gaussian kernel is used, we can apply the fast
Gauss transform [18] to the tracking algorithm to re-
duce its computational complexity from quadratic or-
der to linear order, as was done in . Since the derivative

of Gaussian kernel is still a Gaussian, the mean shift
based object tracking with the Gaussian kernel is

M
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are the discrete Gauss transform of x; and y;. The

similarity measure is
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The computational complexity of a direct evaluation
of the discrete Gauss transform (14) requires O(M N)
operations. In low-dimensional spaces, the computa-
tional complexity has been reduced by Greengard and
Strain [18] to C' - (M + N) using the fast Gauss trans-
form, where the constant factor C' depends on the pre-
cision required and dimensionality. This was applied
to vision problems in [14], but it was also observed
there that the algorithm did not work well in higher
dimensions, since the constant factor in the asymp-
totic complexity grows exponentially with dimensions.
To achieve real-time performance, we employ the im-
proved FGT [35] to accelerate the evaluation of the
similarity cost function.

S Experimental Results

We present some real-time object tracking results
using the proposed algorithm. In the first experiment,
the RGB color space along with the 2D spatial coordi-
nates is used as the joint feature-spatial space. In the
second one, the RGB color space, and 2D spatial coor-
dinates plus 2D image gradient is used. The Gaussian
kernel is used in all the experiments. The algorithm is
implemented in C4++ with Matlab interface and runs
on a 900MHZ PIII PC.

The first experiment uses the Ball sequence [10].
If we blindly apply the tracking algorithm, it will ei-
ther track the background if a large region is used, or
lose the ball if the tracking region is small and the
movement is large. We utilize the background infor-
mation and assume a mask about the tracked object is
available. We initialize the model with a region of size



48 x 48. The bandwidths are (h,o) = (18,12). We only
keep the foreground pixels in the model and run the
tracking algorithm. The algorithm reliably and accu-
rately tracks the ball with average number of iteration
2.7679 and average processing time per frame 0.0169s.
In contrast, to successfully track this sequence, in [10]
a background-weighted histogram was employed. The
tracking results shown in Figure 2 are more accurate
than those in [10]. The number of iterations and sums
of squared differences between the model image and
the tracked images are shown in Figure 3. The re-
sults of our method are more accurate and number of
iterations is smaller than the method using the Bhat-
tacharyya distance. This shows that the discriminating
problems observed on synthetic data affect the simula-
tions in practice as well.

L

Frame 6 Frames 20 Frame 27

Frame 53

Frame 32 Frames 36

Figure 2. Tracking results of the Ball sequence using (top
two rows) our similarity measure and (bottom two rows)
Bhattacharyya coefficient.

In the second experiment a more complex clip is
tested. In order to track a face with changing appear-
ance and complex background, we use both the RGB
color space and 2D image gradients as features. The
image gradients are the horizontal and vertical image
gradients of the grayscaling image obtained using the
Sobel operator. We initialize the model with a region
of size 24 x 24. The bandwidths are (h,o) = (25,12).
The average number of iterations per frame is 2.1414
and average processing time per frame is 0.0044s. The

Number of lterations.
ssD

3 0
Frame Index Frame Index

Figure 3. The number of iterations (left) and sums of
squared differences (right) w.r.t. the frame index for
the Ball sequence using our similarity measure and Bhat-
tacharyya coefficient. The number of iterations using our
similarity measure is much reduced.

algorithm reliably tracks the face and results are shown
in Figure 4.

Figure 4. Tracking results of the Walking sequence. Frames
4,19, 50, 99, 166 and 187 are displayed.

In the third sequence Pedestrian, the size of the
pedestrian changes between frames. We apply the
mean-shift tracking with the translation plus scaling
to the sequence and the results are shown in Figure 5.
The positions and the size of the pedestrian are cor-
rectly recovered by our algorithm.



Figure 5. Tracking results of the Pedestrian sequence.
Frames 3, 17, 31, 45, 60 and 78 are displayed.

6 Discussion and Conclusions

We proposed a novel, simple symmetric similarity
function between spatially-smoothed kernel-density es-
timates of the model and target distributions for object
tracking. The similarity measure is based on the expec-
tation of the density estimates over the model or target
image. The RBF kernel functions are used to measure
the affinity between points and provide a better outlier
rejection property. To track the objects, the similarity
function is maximized using the mean-shift algorithm
to iteratively find the local mode of the function.

Since the similarity measure is an expectation taken
over all pairs of the pixel between two distributions,
the computational complexity is quadratic. To alle-
viate the quadratic complexity, we employ Gaussian
kernels and the improved fast Gauss transform to re-
duce the computations to linear order. This leads to
a very efficient and robust nonparametric tracking al-
gorithm. It also very convenient for integration of the
background information and generalization to high di-
mensional feature spaces.
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Appendix

In this appendix, we will derive a tracking algo-
rithm with the general geometric transformation y =
W (x;p), where p is the geometric deformation para-
meter vector.

The gradient of the distance function (4) with re-
spect to the vector p is

VJ(p) = Gi(p) + G2(p)
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where 2 a is the Jacobian of the warp:
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and Vv; is the image gradient of the target image at
pixel j.

In equation (15), the first term Gi(p) is coun-
terpart of the gradient in the Lucas-Kanade algo-
rithm [27, 2] which contributes to the template match-
ing. The Lucas-Kanade algorithm leads to an itera-
tively reweighted least squares algorithm, if robust error
function is adopted [2]. The pixels with large residual
will get smaller weights to eliminate the effect of out-
lier.

The second term Goy(p) is counterpart of equa-
tion (9) which accounts for recovering the position of
the target.
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